An Aberrant Splice Acceptor Site Due to a Novel Intronic Nucleotide Substitution in MSX1 Gene Is the Cause of Congenital Tooth Agenesis in a Japanese Family
نویسندگان
چکیده
Congenital tooth agenesis is caused by mutations in the MSX1, PAX9, WNT10A, or AXIN2 genes. Here, we report a Japanese family with nonsyndromic tooth agenesis caused by a novel nucleotide substitution in the intronic region between exons 1 and 2 of the MSX1 gene. Because the mutation is located 9 bp before exon 2 (c.452-9G>A), we speculated that the nucleotide substitution would generate an abnormal splice site. Using cDNA analysis of an immortalized patient blood cell, we confirmed that an additional 7-nucleotide sequence was inserted at the splice junction between exons 1 and 2 (c.451_452insCCCTCAG). The consequent frameshift generated a homeodomain-truncated MSX1 (p.R151fsX20). We then studied the subcellular localization of truncated MSX1 protein in COS cells, and observed that it had a whole cell distribution more than a nuclear localization, compared to that of wild-type protein. This result suggests a deletion of the nuclear localization signal, which is mapped to the MSX1 homeodomain. These results indicate that this novel intronic nucleotide substitution is the cause of tooth agenesis in this family. To date, most MSX1 variants isolated from patients with tooth agenesis involve single amino acid substitutions in the highly conserved homeodomain or deletion mutants caused by frameshift or nonsense mutations. We here report a rare case of an intronic mutation of the MSX1 gene responsible for human tooth agenesis. In addition, the missing tooth patterns were slightly but significantly different between an affected monozygotic twin pair of this family, showing that epigenetic or environmental factors also affect the phenotypic variations of missing teeth among patients with nonsyndromic tooth agenesis caused by an MSX1 haploinsufficiency.
منابع مشابه
Identification of a Novel Splice Site Mutation in RUNX2 Gene in a Family with Rare Autosomal Dominant Cleidocranial Dysplasia
Introduction: Pathogenic variants of RUNX2, a gene that encodes an osteoblast-specific transcription factor, have been shown as the cause of CCD, which is a rare hereditary skeletal and dental disorder with dominant mode of inheritance and a broad range of clinical variability. Due to the relative lack of clinical complications resulting in CCD, the medical diagnosis of this disorder is challen...
متن کاملA Novel Splicesite Mutation in the EDAR Gene Causes Severe Autosomal Recessive Hypohydrotic (Anhidrotic) Ectodermal Dysplasia in an Iranian Family
Hypohidrotic ectodermal dysplasia (HED) is a rare congenital disorder arising from deficient development of ectoderm-derived structures including skin, nails, glands and teeth. The phenotype of HED is associated with mutation in EDA, EDAR, EDARADD and NEMO genes, all of them disruptingNF-κB signaling cascade necessary for initiation, formation and differentiation in the embryo and adult. ...
متن کاملMutations in MSX1, PAX9 and MMP20 genes in Saudi Arabian patients with tooth agenesis.
Tooth agenesis in human being is the most common congenital anomaly associated with dental development. Mutations in many genes such as MSH homeobox 1 (MSX1), paired box gene 9 (PAX9), ectodysplasin A (EDA) and EDA receptor (EDAR) have been associated with familial form of this condition. However, in large majority of patients, genetic cause could not be identified. The primary aim of present s...
متن کاملCharacterization of Novel MSX1 Mutations Identified in Japanese Patients with Nonsyndromic Tooth Agenesis
Since MSX1 and PAX9 are linked to the pathogenesis of nonsyndromic tooth agenesis, we performed detailed mutational analysis of these two genes sampled from Japanese patients. We identified two novel MSX1 variants with an amino acid substitution within the homeodomain; Thr174Ile (T174I) from a sporadic hypodontia case and Leu205Arg (L205R) from a familial oligodontia case. Both the Thr174 and L...
متن کاملHaploinsufficiency of MSX1: a mechanism for selective tooth agenesis.
Previously, we found that the cause of autosomal dominant selective tooth agenesis in one family is a missense mutation resulting in an arginine-to-proline substitution in the homeodomain of MSX1. To determine whether the tooth agenesis phenotype may result from haploinsufficiency or a dominant-negative mechanism, we have performed biochemical and functional analyses of the mutant protein Msx1(...
متن کامل